资讯新闻
当前位置: 主页 > 自然地理 >

为什么都是植物能抗旱(比较抗旱的植物)

时间:2023-12-15 11:11:07
“耐旱植物”为什么能在干旱的环境下生存下来?

伟大的自然界中总有坚强的斗士。虽然干旱会对植物造成巨大的伤害,虽然植物无法像人和动物一样逃离危险,但即使在墨西哥北部的荒漠高原也遍布着“荒漠之泉”——仙人掌,甚至在那坚硬的石头上都可以看见倔强的“九死还魂草”——卷柏。我们不得不赞叹自然进化的神奇和生命的顽强!

这些不幸生长在缺水干旱环境下的植物又是怎样活下来的呢?如果要用一句话概括,应该是八仙过海、各显其能。

在非洲的撒哈拉大沙漠里生长着一种叫“短命菊”的菊科植物,只要有一点点雨滴的湿润,它的种子就会马上发芽生长,在短暂的几个星期里完成发芽、生根、生长、开花、结果、死亡的全过程。

沙漠中还有一种木贼,它的种子在降雨后10分钟就会开始萌动发芽,10个小时以后就破土而出,迅速地生长,仅仅两三个月就走完了自己的生命历程。它们懂得适应气候特点,避开旱季,利用短暂的雨季或仅一次降雨来完成生长和繁殖。

更多的植物是通过一些特殊的结构上的适应,来保持在干旱环境中生长发育所需的水分,这些植物通常被冠以“耐旱植物”的美称。

例如,一些生长在我国西北沙漠和戈壁中的植物常具有十分发达的根系,能充分利用土壤深层的水分,并及时供应地上器官,就像沙漠中的胡杨树,可以将根扎进地下10多米,顽强地支撑起一片生命的绿洲。

有些植物为了抗旱,退化叶片或将叶片变成鳞片、膜、鞘、革质,以减少蒸腾失水,就像梭梭和柽柳,很大限度地保持和利用那来之不易的有限水分。另外,有些植物具有特殊的控制蒸腾作用的结构,如马蔺叶片表面上具有的厚角质层,沙冬青的叶表面有一层蜡质或灰白色毛,夹竹桃的叶片气孔凹陷等。这些耐旱植物对付旱情的有力措施,都是通过有效地保水或吸水以达到保持水分平衡的目的。

仙人掌科和景天科植物更为特殊,具有肉质结构,贮水组织非常发达。如北美洲沙漠中的仙人掌,一棵植株可以高达15~20米,贮水2000千克以上。

另外,这类植物有特殊的光合固定二氧化碳途径,气孔白天关闭,利用体内固定的二氧化碳进行光合作用。夜晚张开,吸收二氧化碳并固定。

这样一来,既可以减少蒸腾量,维持水分平衡,又能同化二氧化碳,这也是保水耐旱的策略。

植物为什么有一定的抗寒性和抗旱性

这是植物为适应周围环境,为了生存。对外界环境的自我保护措施,是植物长期进化的结果。抗旱植物的一种保护是关闭气孔减少蒸腾作用,减少水分的流失。抗寒有的书就是落叶,或者是页面革质或蜡质,等等。

为什么植物具有抗旱性和抗寒性

这是植物为适应周围环境,为了生存。对外界环境的自我保护措施,是植物长期进化的结果。抗旱植物的一种保护是关闭气孔减少蒸腾作用,减少水分的流失。抗寒有的书就是落叶,或者是页面革质或蜡质,等等。

【目的】研究冬油菜的抗寒性和抗旱性,探讨抗寒与抗旱之间的关系,为中国北方白菜型冬油菜的改良及抗寒性和抗旱性的综合评价提供可借鉴的方法和理论依据。

【方法】分别通过自然降温处理(15℃—-5℃)和人工控制水分的方法(干旱胁迫4、7和10 d)分别对6份不同抗寒等级冬油菜摸拟低温和干旱胁迫,分析其形态、生理生化和生长指标的变化,采用隶属函数法、相关性分析法、聚类分析法、主成分分析法对不同品种的抗寒性和抗旱性进行综合评价。

【结果】6份冬油菜品种越冬率相差很大(20.1%—94.7%)。抗寒性强的品种植物学形态特征表现为幼苗匍匐贴地生长、生长点洼陷低于地表、叶色深绿色、真叶刺毛多。且低温胁迫之后抗寒生理生化指标变化明显,相对电导率和MDA(丙二醛)含量增加,且抗寒性强的品种增加幅度小;SOD、POD、CAT酶活性升高,可溶性蛋白、可溶性糖、游离脯氨酸等调节性物质含量明显增加,且抗寒性强的品种变化明显,差异显著。随着干旱胁迫时间延长,膜结构首先遭到破坏,相对电导率和MDA含量升高,细胞失水,叶片相对含水量、束缚水/自由水、叶绿素含量降低(光合作用降低),幼苗苗长、叶片和根鲜干重降低,直到幼苗萎蔫,且抗旱性强的品种变化幅度小,同时抗旱性强的品种叶片保水能力强、土壤耗水少、萎蔫系数小。通过主成分分析,6份冬油菜的抗寒性强弱依次为陇油7号陇油6号陇油9号延油2号天油2号Vision,而抗旱性强弱依次为陇油6号陇油7号陇油9号延油2号Vision天油2号。

【结论】中国北方寒旱区低温、干旱并存,不同冬油菜品种间抗寒性和抗旱性差异较大,由于产生了交叉适应性,在抵御低温冻害的同时提高了对干旱胁迫的适应性,因此,白菜型冬油菜抗寒性强的品种一般抗旱性也比较强。

耐旱植物为什么能够抗旱

抗旱植物都无外乎以下的两类,有发达的防失水机制与较强的吸水机制的和肉质类的植物.比若说气孔下陷,叶变态为针刺样,发达的根系,极低的组织内渗透压,皮层或表皮多层,雨季时贮水,旱季时减少蒸腾.呵呵!肉质的植物由于存在亲水的物质形成了大量的结合水,也有极强的保水能力.

耐旱植物的抗旱机制是什么?

【耐旱植物的抗旱机制】

1、植物形态结构特征对其耐旱机制的影响

(1)根系。植物根系是植物直接吸收水分的重要器官,它对植物的耐旱功能具有至关重要的作用。纵深发达的根系系统可使植物充分吸收利用贮存在土壤中的水分,使植物度过干旱期。一般认为抗旱性强的植物,根水势低,利于水分吸收。

(2)叶片。作为同化和蒸腾器官的叶片,在长期干旱胁迫下,叶片的形态结构会发生变化,其形态结构的改变与植物的耐旱性有着密切的关系。主要表现在:叶片表皮外壁有发达的角质层,角质层是一种类质膜,其主要功能是减少水分向大气散失,是植物水分蒸发的屏障。厚的角质层可提高植物的能量反射与降低蒸腾,从而增强植物的抗旱性;具有表皮毛,可以保护植物避免强光照射,减少蒸腾;具有大的栅栏组织/海绵组织比和小的表面积/体积比,发达的栅栏组织,分布于叶的背腹两面,可使干旱缺水植物萎蔫时减少机械损伤。而小的表面积/体积比,可以很大程度减少水分丧失。韦梅琴的4种委陵菜属植物解剖研究,也证实了这一点。

2、渗透调节。水分胁迫条件下会积累有机分子相溶性溶质或渗压剂,有效地提高植物的渗透调节能力、增强植物的抗逆性。

(1)脱落酸与植物抗旱性。脱落酸是植物五大类激素之一,大量的试验表明:当植物处于干旱、低温、盐碱、环境污染等不利环境下,植物体内脱落酸大量增加。脱落酸的增加,使植物对不利环境产生抗性。尤其是脱落酸的增加和气孔的关闭一致,这对植物抗旱是非常有利的。脱落酸除能调节气孔开闭外,还能促进根系对水和离子的吸收。另外,脱落酸能促进芽的休眠,使生长速度下降,促进同化物质的积累,这些都可以减少蒸腾,提高植物保水能力,对植物抗旱是十分有利的。

(2)脯氨酸与植物抗旱性 。脯氨酸积累是植物为了对抗干旱胁迫而采取的一种保护性措施。脯氢酸亲水基与蛋白质亲水基相互作用使蛋白质稳定性提高,乃至严重水分胁迫下苜蓿根瘤代谢酶和结构蛋白质可能会受积累的脯氨酸的保护,减轻严重干旱对组织的危害程度。在正常情况下,植物中游离的脯氨酸含量仅为O.2~0.6 mg·g-1干重,占总游离氨基酸的百分之几,而在干旱条件下,脯氨酸可成10倍地增加,占总游离氨基酸的30%。水分胁迫下脯氨酸的积累一方面增强了植物的渗透调节作用,使组织的抗脱水力加大;另一方面脯氨酸的偶极性保护丁膜蛋白结构的完整性,同时增强了膜的柔韧性。脯氨酸还有作为自由基清除剂,调节细胞质PH值,防止酶变性,防止细胞质酸化的作用。

(3)甜菜碱与植物抗旱性。近年研究结果指出,甜菜碱可能是作为植物的主要渗透调节物质之一而对植物的抗旱性起作用。其依据是渗透胁迫条件下,植物体内的甜菜碱醛脱氧酶(BADH)和胆碱单氧化酶(CMO)活性升高,这两种酶在高等植物中,具有将胆碱氧化为甜菜碱的作用,并在细胞质中积累甜菜碱,甜菜碱的积累能够保持细胞与外界环境的渗透平衡和稳定复合蛋白四级结构,从而提高植物对干旱胁迫的适应性。甜菜碱在叶绿体中合成,作为一种渗透调节物质,在植物受到环境胁迫时在细胞内积累降低渗透势,还能作为一种保护物质具有极为重要的“非渗透调节”功能,维持生物大分子的结构和完整性,维持其正常的生理功能,解除高浓度盐对酶活性的毒害和保护呼吸酶及能量代谢过程。还能影响细胞内离子的分布。

(4)水孔蛋白与植物抗旱性 。水孔蛋白是植物体中水分跨膜运输的主要途径。是作为跨膜通道的主嵌人蛋白(MIP)家族中有运输水分功能的一类蛋白质。水孔蛋白、H+/ATPase和Na+/H+反向运输蛋白在调节细胞水势和胞内盐离子分布中起信号导作用。植物体可以通过调控水孔蛋白等膜蛋白以加强细胞与环境的信息交流和物质交换,改变膜对水分的通透性,实现渗透调节,以增强植物的抗旱、耐盐能力。

3、活性氧清除。植物受到水分、盐分胁迫时,产生活性氧,对细胞造成损伤。植物体内广泛存在的抗氧化酶系统(超氧化物歧化酶SOD)、过氧化氢酶CAT、过氧化物酶POD等)能有效清除活性氧,保证细胞正常的生理功能,维持其对干旱胁迫的抗性。耐旱植物在逆境条件下能使保护酶活力维持在一个较高水平,有利于清除自由基,降低膜脂过氧化水平,从而减轻膜伤害程度。

4、LEA蛋白与植物抗旱性 。LEA蛋白是指胚胎发生后期种子中大量积累的一系列蛋白质。LEA蛋白广泛存在于高等植物中。在植物个体发育的其他阶段,也能因ABA或脱水诱导而在其他组织中高水平表达。一般认为,LEA蛋白在植物细胞中具有保护生物大分子,维持特定细胞结构,缓解干旱、盐、寒等环境胁迫的作用。LEA蛋白大多是高度亲水的。高度亲水性有利于LEA蛋白在植物受到干旱而失水时,能够部分替代水分子,蛋白质的多羟基能保持细胞液处于溶解状态,从而避免细胞结构的塌陷,稳定细胞结构,尤其是膜结构。在干旱脱水过程中细胞液的离子浓度会迅速升高,高强度的离子浓度会造成细胞的不可逆伤害。在第3组LEA蛋白的基元序列所构成的兼性α-螺旋结构中,亲水和疏水氨基酸分别处于螺旋的特定位置,形成分子内螺旋束,其表面具有束缚阴离子和阳离子的能力,因此,也能控制高盐、缺水伤害。

植物抗旱是一个复杂的问题,研究表明,植物的抗旱性是由多基因控制的,不同作物和品种适应干旱的方式是多种多样的,一些作物具有综合性的、几种机理共同起作用的抗旱特性。

为什么沙生植物(如仙人掌)能够耐旱?

沙生植物,像仙人掌能够耐旱是因为。

1、叶子变异成细长的刺或白毛以减少水分的蒸腾,减弱强烈阳光对植株的危害,还可使湿气不断积聚凝成水珠,滴到地面被分布得很浅的根系吸收;

2、茎秆粗大肥厚多汁、有发达的薄壁组织细胞,具棱肋,使其身体伸缩自如,体内水分多时能迅速膨大,干旱缺水时能向内收缩,既保护了植株表皮,又有散热降 温的作用。

3、茎的表皮有厚而硬的蜡质作为保护层,或生有密集的绒毛,保护它不受强光的照射,降低水份蒸发。

4、气孔晚上开放,白天关闭,减少水分散 失。

5、茎秆绿色,可代替叶子光合,制造食物。

6、根分支多,系统庞大,一遇降雨就会在表土长出许多新根大量吸水。它的大根有很厚的木栓组织保护,能在灼热的沙石上生活而不致死。

正是这些形态结构与生理上的特性,使仙人掌类植 物具有惊人的抗旱能力。

仙人掌虽然耐旱,但是加强管理和施肥,会让仙人掌长势更好。

1、浇水和喷水。陆生型仙人掌类有明显的生长期和休眠期,生长期要浇水,休眠期少浇水甚至不浇水。对附生型,冬季温度保持在12℃以上,可常年浇水与喷水;冬季温度保持在12℃以下,浇水可酌情减少并停止喷水。

2、施肥。施肥掌握这样的原则:适时、适量、看对象。施肥在春、秋天进行,每隔20天施肥1次,应选择在晴天的清晨或傍晚时分进行,若盆土较干燥时,在盆土洒点水再施点采法特水溶肥,浓度1500倍左右为宜,第二天早晨浇1次透水,效果更佳。

3、光照。陆生型较喜阳光充足,特别是冬季更要充分阳光照射。一般高大柱形及扁平状的仙人掌类较耐强烈光照,夏季可放在室外不需遮阳;较小的球形类则夏季多喜半阴条件,在夏季高温季节的6~8月在金琥顶部生长点及周围,罩上一片圆形塑料薄膜,以使球体各部分生长均匀。

4、温度。仙人掌生长适温为20~35℃之间。陆生型在冬季休眠期间并不要求太高的温度,在保持盆土干燥的情况下,维持温度在4~7℃即可。

5、空气。仙人掌类花卉大都原产于荒漠空旷地区,通风良好,空气清新。因此,在盛夏炎热的天气里,应做好栽培场所的通风降温工作。栽培温室宜选择在空气流通的环境,并多设些窗户、天窗之类的通风口,以便暑热天气通风换气。

6、病虫害。为害仙人掌花卉的病菌有细菌和真菌,但问题并不十分严重,只要改善栽培条件,管理措施得当,预防与消灭病虫兼施,很容易获得良好效果。

长沙癫痫病专业医院

癫痫吃什么药

癫痫病吃什么药

天津癫痫病医院

西安中际医院治癫痫专业吗

------分隔线----------------------------